Multi Circuit Monitor
10kVA – 1 MVA
The Thycon Multi Circuit Monitor (MCM) is the ideal product for data centre managers, engineers and operational personnel who are responsible for delivering efficient and reliable power to critical applications.

With the Multi Circuit Monitor (MCM) installed into Power Distribution Units (PDU), data centre operators are able to optimise the critical power infrastructure to meet the demands of continuous availability.

The MCM is flexible in its implementation by the fact that the circuit monitoring modules, while they are 24 circuit as standard, can be 6 circuit, 12 circuit & 18 circuit if required. As well as being configured to work in any combination of distribution trees available, they can also be placed under computer floors within their own enclosures and connected via cat 5 cable to an Ethernet hub then from there to the Monitoring Module Interface that can be located where required.

The MCM unit measures the PDU voltages and currents and calculates the following parameters:
- L-L RMS voltages
- L-N RMS voltages
- RMS currents
- Peak RMS voltage for each of the 3 L-N phases
- Peak RMS current for each circuit
- P(W) and S(VA) for each circuit
- Demand values kWh and kVAH for each circuit
- THD and harmonics analysis for each circuit and each L-N voltage
- Power factor for each circuit
- Crest factors for L-N voltages and circuit currents

Ideal for data centres, industrial facilities and IT facilities where monitoring of power distribution is required for:
- allocating energy costs
- tracking power usage
- avoiding outages through proper power monitoring
- optimising existing power infrastructure
- improving efficiency in the distribution of power
- enabling accurate sub-billing of power usage
Technical data

<table>
<thead>
<tr>
<th>Metering (per circuit)</th>
<th>Mains Metering (per phase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS current</td>
<td>L-L RMS voltages</td>
</tr>
<tr>
<td>Maximum current</td>
<td>L-N RMS voltages</td>
</tr>
<tr>
<td>THD of current</td>
<td>Maximum L-L RMS voltages</td>
</tr>
<tr>
<td>Current harmonics</td>
<td>Minimum L-L RMS voltages</td>
</tr>
<tr>
<td>Power factor</td>
<td>Maximum L-N RMS voltages</td>
</tr>
<tr>
<td>kW</td>
<td>Minimum L-N RMS voltages</td>
</tr>
<tr>
<td>kVA</td>
<td>THD of each L-N</td>
</tr>
<tr>
<td>Maximum kW</td>
<td>Harmonics of each L-N</td>
</tr>
<tr>
<td>Maximum kVA</td>
<td>Crest factor of each L-N</td>
</tr>
<tr>
<td>Demand kWh</td>
<td>Frequency</td>
</tr>
<tr>
<td>Demand kVAh</td>
<td>Total kW, kVA</td>
</tr>
<tr>
<td>Current crest factor</td>
<td>Total current</td>
</tr>
</tbody>
</table>

Alarms
- Over current detection
- Current : 1% of full scale

Communication
- MODBUS/TCP protocol over Ethernet
- Current to 100A using 100A CT
- MODBUS RTU over RS-485
- Voltage 90..300 V L-N using appropriate voltage interface

Metering Accuracy
- Current : 1% of full scale
- Voltage : 1% of full scale

Metering Range
- Current to 100A using 100A CT